目前,LED芯片技术的发展关键在于基底材料和晶圆生长技术。基底材料除了传统的蓝宝石材料、硅(Si)、碳化硅(SiC)以外,氧化锌(ZnO)和氮化镓(GaN)等也是当前研究的焦点。无论是重点照明和整体照明的大功率芯片,还是用于装饰照明和一些简单辅助照明的小功率芯片,技术提升的关键均围绕如何研发出更高效率、更稳定的芯片。因此,提高LED芯片的效率成为提升LED照明整体技术指标的关键。在短短数年内,借助芯片结构、表面粗化、多量子阱结构设计等一系列技术的改进,LED在发光效率出现重大突破,LED芯片结构的发展如图1所示。相信随着该技术的不断成熟,LED量子效率将会得到进一步的提高,LED芯片的发光效率也会随之攀升。
薄膜芯片技术(Thinfilm)是生产超亮LED芯片的关键技术,可以减少侧向的出光损失,通过底部反射面可以使得超过97%的光从正面输出(图2),不仅大大提高LED发光效率,也简易透镜的设计。
高功率LED封装技术可区分为单颗芯片、多芯片整合及芯片板上封装三大类,以下将进行说明。
发光效率、散热、可靠性为单颗芯片封装优势
单颗芯片封装是封装技术中应用最多的,其主要的技术瓶颈在于芯片的良率、色温的控制及荧光粉的涂敷技术,而欧司朗光电半导体的Golden DRAGON Plus LED,采用硅胶封装,其封装外型及内部简要结构如图3所示。该LED具有170度的光束角,能理想地配合二次光学透镜或反光杯,其硅胶透镜有着耐高温及低衰减的特性。独特的封装设计进一步提升LED的散热性能,使产品的热阻控制在每瓦6.5℃左右,有助于降低热阻。另外,荧光粉的特定配制使LED的色温覆盖冷白、中性白和暖白范围。单芯片封装的优势在于光效高、易于散热、易配光及可靠性。
多芯片整合封装于小体积内可达高光通量
多芯片整合组件是目前大功率LED组件最常见的另一种封装形式,可区分为小功率和大功率芯片整合组件两类,前者以六颗低功率芯片整合的1瓦大功率LED组件最典型,此类组件的优势在于成本较低,是目前不少大功率组件的主要制作途径。大功率芯片结合以OSTAR SMT系列为代表,其封装外型如图4所示,通过优化设计,可使最终产品的热阻控制在每瓦3.1℃,同时可以驱动高达15瓦的高功率。该封装的优势在于在很小的空间内达到很高的光通量。
COB有效改进散热缺陷
COB技术沿用传统半导体技术,即直接将LED芯片固定在印刷电路板(PCB)上。利用该技术,目前已有厚度仅达0.3毫米以下的LED。由于LED芯片直接与PCB板接触,增加导热面积,散热问题得以改善。此封装形式多以小功率芯片为主。